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(R)-6,6 0-Bis(trifluoromethanesulfonyl)-2,2 0-
dihydroxy-1,1 0-binaphthyl: a new ligand for asymmetric synthesis
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Abstract—The new (R)-6,6 0-bis(trifluoromethanesulfonyl)-2,2 0-dihydroxy-1,1 0-binaphthyl (1) has been synthesized and proved to
generate highly active zirconium-based catalysts for asymmetric Mannich-type reactions.
� 2006 Published by Elsevier Ltd.
(R)-2,2 0-Dihydroxy-1,1 0-binaphthyl ((R) Binol, 2) has
been known since 1979 to be an efficient ligand for the
metal-mediated catalysis of asymmetric transformations.1

As a result, it has been the subject of various modifications
and one of these involves the introduction of electron
withdrawing groups on to the aromatic rings.2 Moreover,
the introduction of bromine, trifluoromethyl or pentaflu-
oroethyl groups in the 6,6 0 positions of the binaphthol
ring has served to increase the Lewis acidity as well as
the enantioselectivity of zirconium-based catalysts as
reported by Kobayashi.3 The trifluoromethanesulfonyl
group is one of the strongest electron withdrawing
groups.4 In light of these results, we decided to prepare
the new 6,6 0-bis(trifluoromethanesulfonyl)-2,2 0-dihy-
droxy-1,1 0-binaphthyl (1)5 and we now wish to report
our first results.
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Since all previously reported synthesis of aryltrifluoro-
methylsulfones 6 failed in our case, the synthesis of 1
was achieved by an original route (Scheme 1). Our syn-
thesis starts with the reaction of SO2 with the lithiated
derivative of the previously reported (R)-6,6 0-dibromo-
2,2 0-bis(hexyloxy)-1,1 0-binaphthyl (3).7,8 The lithium
sulfinate (4) produced was then treated with sulfuryl
chloride to give the bis sulfonyl chloride intermediate
(5), which was purified by column chromatography
over silica gel.9 Reaction with silver fluoride and filtra-
tion of AgCl gave pure bis sulfonyl fluoride intermedi-
ate (6),10,11 which was trifluoromethylated to give the
bis trifluoromethanesulfonyl intermediate (7).12,13

Finally, enantiomerically pure 1 was obtained after
dealkylation using BBr3 in 51% overall yield starting
from 2.14–16
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Scheme 1. Reagents and conditions: (a) NaH (7 equiv), DMF, 0 �C; (b) C6H13l, rt, 1 h 30 min; (c) NBS (3 equiv), CH3CN, rt, 16 h; (d) BuLi (2.1
equiv), THF, �60 �C; (e) SO2 in excess; (f) SO2Cl2 (2 equiv); (g) AgF, CH3CN, rt, 3 h; (h) TMSCF3 (4 equiv), TASF (0.2 equiv), 5 �C; (i) BBr3 (5
equiv), toluene, rt, 24 h.
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We then decided to study the catalytic efficiency of 1 in
asymmetric Mannich-type reactions involving zirco-
nium-Binol based catalysts (Eq. 1). In order to compare
the efficiency of this catalyst to that of other substituted
Binol derived catalysts already reported,3 we chose the
reaction between the imine derived from 1-naphthalene-
carboxaldehyde and the trimethylsilyl enolate derived
from methyl isobutyrate as a model. Our results are
summarized in Table 1.

Initially, we verified that none of the components of the
catalytic system was active individually (Table 1, entries
1, 2). Our results clearly demonstrate that the introduc-
Table 1. Asymmetric catalysis of Mannich-type reactions using various 6,6 0

Entry Imine (R) Catalytic system M(OR0)4/Ra Cat. (mol %) Tem

1 Np Zr/no ligand 2 �78
2 Np No metal/Tf 2 �78
3 Np Zr/H 2 �78
4 Np Zr/Br 2 �78
5 Np Zr/Tf 2 �78
63a Np Zr/Br 10 �45
7 Np Zr/H 0.5 �95
8 Np Zr/Tf 0.5 �95
9c Np Zr/Tf 2 �78
10d Np Ti/Tf 0.5 �78
11 Np Zr/Tf 0.5 �78
123a 4-Cl–Ph Zr/CF3 2 �78
13 4-Cl–Ph Zr/Tf 2 �78
14 4-Cl–Ph Zr/Tf 0.5 �78

a Molar ratio Zr/Binol = 1/2.
b Isolated yields.
c In this experiment Zr(OtBu)4 was replaced by Zr(nOPr)4.
d Ti(OiPr)4 was used as the titanium source.
tion of the trifluoromethanesulfonyl group is strongly
beneficial for catalyst turnover, since under our condi-
tions 1 gave superior results to both 2 and (R)-dibromo
Binol (Table 1, entries 3, 4 and 5). Using 1 the reaction
even occurs at �95 �C (entries 7 and 8) or when catalyst
loading is reduced to 0.5 mol % (entries 8, 11, and 13).
The economically desirable replacement of Zr(OtBu)4

with a 30 wt % solution of Zr(OnPr)4 in nPrOH17 did
not adversely affect the reaction (Table 1, entries 5 and
9). The use of Ti(OiPr)4 instead of Zr(OtBu)4 led to a
loss of both enantioselectivity (Table 1, entries 5 and
10) and isolated yield. Kobayashi reported the successful
use of 6,6 0-(CF3)2-Binol for the analogous reaction with
-R-substituted Binols

perature (�C) Time (h) Product yieldb (%) Ee (%) R isomer

16 0 —
16 0 —
2 6 nd
2 65 68
2 99 66

30 99 92
4 0 —
4 50 80
2 99 62

16 50 14
16 67 66
16 >99 83
16 85 66
16 41 65
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the imine derived from 4-chlorobenzaldehyde (Table 1,
entry 12).3a In preliminary experiments we have found
that 1 is also effective for this reaction, although further
optimization is required (Table 1, entries 13 and 14).
Interestingly, when racemic 3,3 0-trifluoromethanesulfo-
nyl-2,2 0-dihydroxy-1,1 0-binaphthyl5 was used in place
of 1 (same conditions in entry 5) the reaction proceeded
in only 17% yield.

In conclusion, we have shown that the introduction of
trifluoromethanesulfonyl groups in the 6,6 0 positions
on the chiral backbone generates highly active zirco-
nium-based catalyst for Mannich-type reactions. The
catalysis of other reactions with this ligand and its deriv-
atives is currently under investigation in our laboratory.
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